27 Nov 2018

The term Internet of Things (IoT) has almost been beaten to death at this point, as more and more security integrators, manufacturers and customers take advantage of the ability to increase connectivity between devices (and therefore take on the dangers this introduces).

But the methods by which we interact with the IoT and protect its devices are still catching up, which means security manufacturers must take part in shifting their focus toward safeguarding data, engaging in vulnerability testing of products and incorporating stringent protections at every stage of the product development process. One small leak or breach on a single connected device can potentially cause significant damage across an organisation

Who is responsible for IoT security?

One small leak or breach on a single connected device can potentially cause significant damage across an organisation, creating a disruption within a company, affecting its assets, employees and customers. The continued question seems to be: Who is ultimately responsible for the security of IoT devices?

In a recent survey from Radware, a provider of application delivery and cybersecurity solutions, there was no clear consensus among security executives when asked this question. Thirty-five percent of respondents placed responsibility on the organisation managing the network, 34 percent said the manufacturer and 21 percent chose the consumers using the devices as being primarily responsible. 

Several schools of thought exist for each:

  • The Organisation

It's not surprising that most people see the organisation as the main stakeholder for IoT security responsibility; after all, if a company is managing a network, one would expect it to protect the network as well.
One way that the organisation can embrace this responsibility is by adopting a user-centric design with scalability, tactical data storage and access with appropriate identification and security features (for example, the use of multilevel authentication through biometrics in access control).
Organisations must also use their IT team to strengthen the overall cybersecurity of the IoT by keeping up with the latest software updates, following proper data safety protocols and practicing vulnerability testing.

  • The Manufacturer

Manufacturers that provide IoT-enabled devices as part of a security system must be fully knowledgeable of the risks involved and effectively communicate them to the integrator or end user.
Providing the education necessary and dedication to protecting users of its equipment makes a manufacturer more trustworthy and understanding in the eyes of an end user. Ensuring encryption between devices is a key step that manufacturers can take to work toward achieving complete protection in the IoT.

  • The User

Despite the protection delivered by the organisation and manufacturer, there's always the option for IoT security to be enhanced or possibly even diminished by the individual user. It's critical that best practices for data protection are in place every time an individual uses a device that is connected to the network.
These include disabling default credentials, proper password etiquette, safe sharing of sensitive information and the instinct to avoid any suspicious activity or requests. Manufacturers that provide IoT-enabled devices as part of a security system must be fully knowledgeable of the risks involved

The short answer to the responsibility question is this: everyone. Each sector has a responsibility to contribute to the protections needed for IoT-enabled devices.

However, as a manufacturer, it is imperative that our teams think about each level of protection when developing products for public consumption, including how the organisation implements the technology and how the integrator engages in training with users. 

Organisations must also use their IT team to strengthen the overall cybersecurity of the IoT by keeping up with the latest software updates

Manufacturer vulnerability testing

One way that manufacturers can implement added protections against outside threats is by boosting their attention to security protocols in the product development stage. For some, this requires a different approach in the design and development of security systems. Identifying vulnerabilities is at the core of this.

A security vulnerability in a product is a pattern of conditions in the design of a system that is unable to prevent an attack, resulting in weaknesses of the system such as mishandling, deleting, altering or extracting data. Increased connectivity makes these vulnerabilities more of a liability, as IP-enabled (or networked) devices are more likely to be breached by outsiders looking to permeate an organisation and collect valuable data. 

A security vulberability in a product is a pattern of conditions in the design of a system that is unable to prevent an attack, resulting in weaknesses of the systemWhile some of these hacks are a little more “simple” in nature — such as outsiders trying to guess a password using manufacturer-set passwords — others are more complex, such as a denial-of-service, where attackers attempt to overload the system by flooding the target with excessive demands and preventing legitimate requests from being carried out. This makes it virtually impossible to stop the attack by blocking a single source.  

As a result of these potential threats — and to help manufacturers deliver best-in-class products — it's imperative that vulnerability testing is done throughout a product's development, starting at phase one in the process.

This includes analysis of the type of cyberattacks that can potentially attach, breach and disable a system. Many manufacturers attempt to hack their own products from within the organisation — or even go as far as hiring a third-party professional group to do it for them. 

Success in a volatile technology landscape 

This kind of development puts a product through rigorous levels of testing, and once weaknesses are exposed, they can be patched up and the cycle of attack-and-defense can take place until the product is protected fully and ready for market.

Skipping this step in the development process can open manufacturers up to significant liability, so it's important for this testing to take place and corrective actions be taken to rectify gaps in security. The more extensive an organisation's security testing approaches are, the better are its chances of succeeding in an increasingly volatile technology landscape. 

But the testing doesn't stop in the development stage. Attacks on a system continue long after the product has been introduced to market, requiring continued updates to be made available in an effort to protect customers. Manufacturers are tasked with implementing further firmware updates to keep a product in the field readily prepared to revoke the latest critical bugs that can affect the market. 

What end users demand from security

We're seeing a significant shift in the education and demand from a customer perspective. In the past, consumers took the advice of integrators and consultants as far as the “right” security systems to install for their needs. Today, the self-education of end users is on the rise as more and more IT departments become involved in the selection and investment of physical access control systems. We're seeing a significant shift in the education and demand from a customer perspective

A larger number of end users are demanding security products that meet IT standards of network protection, and they take these considerations into account when working with integrator partners on the selection of systems to meet their needs.

As a result, manufacturers are tasked with not only developing robust IoT-centric products, but also continuing to be involved on a regular basis in an effort to continuously keep organisations safe. 

A comprehensive security strategy from manufacturers must involve multiple levels of product selection, testing and integration — centered on the team-based approach to implementing training and protocols within an organisation.

While manufacturers are stepping up their game in the development of robust products, this remains a team effort that must be addressed every week — not something you implement, then forget about. The safety of data — and the entire organisation — depends on it.